mirror of
https://github.com/davidhalter/typeshed.git
synced 2025-12-22 11:51:28 +08:00
tensorflow: add tensorflow.keras.activations members (#11444)
Co-authored-by: Jelle Zijlstra <jelle.zijlstra@gmail.com>
This commit is contained in:
@@ -34,6 +34,7 @@ IntDataSequence: TypeAlias = Sequence[int] | Sequence[IntDataSequence]
|
||||
StrDataSequence: TypeAlias = Sequence[str] | Sequence[StrDataSequence]
|
||||
ScalarTensorCompatible: TypeAlias = tf.Tensor | str | float | np.ndarray[Any, Any] | np.number[Any]
|
||||
UIntTensorCompatible: TypeAlias = tf.Tensor | int | UIntArray
|
||||
FloatTensorCompatible: TypeAlias = tf.Tensor | int | IntArray | float | FloatArray | np.number[Any]
|
||||
StringTensorCompatible: TypeAlias = tf.Tensor | str | npt.NDArray[np.str_] | Sequence[StringTensorCompatible]
|
||||
|
||||
TensorCompatible: TypeAlias = ScalarTensorCompatible | Sequence[TensorCompatible]
|
||||
|
||||
@@ -1,12 +1,37 @@
|
||||
from _typeshed import Incomplete
|
||||
from collections.abc import Callable
|
||||
from typing import Any
|
||||
from typing_extensions import TypeAlias
|
||||
|
||||
import numpy as np
|
||||
from tensorflow import Tensor
|
||||
from tensorflow._aliases import FloatArray, FloatDataSequence, FloatTensorCompatible, Integer
|
||||
|
||||
# The implementation uses isinstance so it must be dict and not any Mapping.
|
||||
_Activation: TypeAlias = str | None | Callable[[Tensor], Tensor] | dict[str, Any]
|
||||
# Ints are not allowed.
|
||||
_ActivationInput: TypeAlias = Tensor | FloatDataSequence | FloatArray | np.number[Any] | float
|
||||
|
||||
def deserialize(
|
||||
name: str, custom_objects: dict[str, Callable[..., Any]] | None = None, use_legacy_format: bool = False
|
||||
) -> Callable[..., Any]: ...
|
||||
def elu(x: _ActivationInput, alpha: FloatTensorCompatible | FloatDataSequence = 1.0) -> Tensor: ...
|
||||
def exponential(x: _ActivationInput) -> Tensor: ...
|
||||
def gelu(x: _ActivationInput, approximate: bool = False) -> Tensor: ...
|
||||
def get(identifier: _Activation) -> Callable[[Tensor], Tensor]: ...
|
||||
def __getattr__(name: str) -> Incomplete: ...
|
||||
def hard_sigmoid(x: _ActivationInput) -> Tensor: ...
|
||||
def linear(x: _ActivationInput) -> Tensor: ...
|
||||
def mish(x: _ActivationInput) -> Tensor: ...
|
||||
def relu(
|
||||
x: _ActivationInput,
|
||||
alpha: FloatTensorCompatible = 0.0,
|
||||
max_value: FloatTensorCompatible | FloatDataSequence | None = None,
|
||||
threshold: FloatTensorCompatible | FloatDataSequence = 0.0,
|
||||
) -> Tensor: ...
|
||||
def selu(x: _ActivationInput) -> Tensor: ...
|
||||
def serialize(activation: Callable[..., Any], use_legacy_format: bool = False) -> str | dict[str, Any]: ...
|
||||
def sigmoid(x: _ActivationInput) -> Tensor: ...
|
||||
def softmax(x: Tensor, axis: Integer = -1) -> Tensor: ...
|
||||
def softplus(x: _ActivationInput) -> Tensor: ...
|
||||
def softsign(x: _ActivationInput) -> Tensor: ...
|
||||
def swish(x: _ActivationInput) -> Tensor: ...
|
||||
def tanh(x: _ActivationInput) -> Tensor: ...
|
||||
|
||||
Reference in New Issue
Block a user