mirror of
https://github.com/davidhalter/jedi.git
synced 2025-12-06 14:04:26 +08:00
Push tuple handling onto Tuple class
This resolves a TODO to avoid using a private method
This commit is contained in:
@@ -183,7 +183,6 @@ class TypingClassValueWithIndex(_TypingClassMixin, TypingValueWithIndex):
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
# Circular
|
||||
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
|
||||
from jedi.inference.gradual.base import GenericClass
|
||||
|
||||
type_var_dict = {}
|
||||
annotation_generics = self.get_generics()
|
||||
@@ -216,30 +215,7 @@ class TypingClassValueWithIndex(_TypingClassMixin, TypingValueWithIndex):
|
||||
|
||||
elif annotation_name == 'Tuple':
|
||||
tuple_annotation, = self.execute_annotation()
|
||||
# TODO: is can we avoid using this private method?
|
||||
if tuple_annotation._is_homogenous():
|
||||
# The parameter annotation is of the form `Tuple[T, ...]`,
|
||||
# so we treat the incoming tuple like a iterable sequence
|
||||
# rather than a positional container of elements.
|
||||
return annotation_generics[0].infer_type_vars(
|
||||
value_set.merge_types_of_iterate(),
|
||||
)
|
||||
|
||||
else:
|
||||
# The parameter annotation has only explicit type parameters
|
||||
# (e.g: `Tuple[T]`, `Tuple[T, U]`, `Tuple[T, U, V]`, etc.) so we
|
||||
# treat the incoming values as needing to match the annotation
|
||||
# exactly, just as we would for non-tuple annotations.
|
||||
|
||||
for element in value_set:
|
||||
py_class = element.get_annotated_class_object()
|
||||
if not isinstance(py_class, GenericClass):
|
||||
py_class = element
|
||||
|
||||
merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
merge_pairwise_generics(self, py_class),
|
||||
)
|
||||
return tuple_annotation.infer_type_vars(value_set, is_class_value)
|
||||
|
||||
return type_var_dict
|
||||
|
||||
@@ -338,6 +314,38 @@ class Tuple(BaseTypingValueWithGenerics):
|
||||
.py__getattribute__('tuple').execute_annotation()
|
||||
return tuple_
|
||||
|
||||
def infer_type_vars(self, value_set, is_class_value=False):
|
||||
# Circular
|
||||
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
|
||||
from jedi.inference.gradual.base import GenericClass
|
||||
|
||||
if self._is_homogenous():
|
||||
# The parameter annotation is of the form `Tuple[T, ...]`,
|
||||
# so we treat the incoming tuple like a iterable sequence
|
||||
# rather than a positional container of elements.
|
||||
return self.get_generics()[0].infer_type_vars(
|
||||
value_set.merge_types_of_iterate(),
|
||||
)
|
||||
|
||||
else:
|
||||
# The parameter annotation has only explicit type parameters
|
||||
# (e.g: `Tuple[T]`, `Tuple[T, U]`, `Tuple[T, U, V]`, etc.) so we
|
||||
# treat the incoming values as needing to match the annotation
|
||||
# exactly, just as we would for non-tuple annotations.
|
||||
|
||||
type_var_dict = {}
|
||||
for element in value_set:
|
||||
py_class = element.get_annotated_class_object()
|
||||
if not isinstance(py_class, GenericClass):
|
||||
py_class = element
|
||||
|
||||
merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
merge_pairwise_generics(self, py_class),
|
||||
)
|
||||
|
||||
return type_var_dict
|
||||
|
||||
|
||||
class Generic(BaseTypingValueWithGenerics):
|
||||
pass
|
||||
|
||||
Reference in New Issue
Block a user